On the chemical and processing stability of pharmaceutical solids Solid form dependent water presenting capacity and process induced solid form transformation

نویسنده

  • MINA HEIDARIAN HÖCKERFELT
چکیده

Heidarian Höckerfelt, M. 2015. On the chemical and processing stability of pharmaceutical solids. Solid form dependent water presenting capacity and process induced solid form transformation. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 203. 57 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9325-7. There is a need for improving our knowledge and understanding about formation mechanisms and nature of amorphous state in order to prevent the unintended presence of disorder in solid pharmaceutical products and reduce the related stability issues. The suggested theory that water binding capacity of amorphous cellulose affects the chemical stability of hydrolysis sensitive drugs in formulations with cellulose based excipients needs a clarification and water-cellulose interaction profiles need to be examined. This thesis has addressed these questions. Chemical, mechanical and thermal methods have been used to create partially or predominantly amorphous solids. Mechanisms and the pathways for transformation to amorphous phase and the characteristic qualities of this phase is studied in order to give some tools to predict, to control or prevent the creation of disorder in a crystalline structure. The water interaction with amorphous pharmaceutical materials has been studied to improve stability of hydrolysis sensitive drugs. The transition to amorphous state during handling of pharmaceutical material, referred to as mechanical activation in processes like blending, mixing and compression is substantially a consequence of vitrification. The process is described as creation of hot spots where friction caused by particle sliding raise the temperature above the melting point of the material. The fast cooling process promotes creation of a local disordered molecular arrangement. It is possible to decrease the degree of amorphisation and undesired stability problems by reducing the friction and inhibit the creation of crystal defects during processing. The glass-forming propensity is an inherent material characteristic related to molecular size and structure and is not process dependent. Molecules with a couple of aromatic rings are often poor glass-formers. Less symmetrical, branched molecular structures with presence of electronegative atoms are more readily transformed to and exist in amorphous state when handled and stored at temperatures below their glass transition temperature. The interaction profile of cellulose with water is strongly dependent on solid state structure of cellulose. Crystallinity is the key parameter in water presenting capacity of cellulose. Amorphous regions have a capacity to bind the water and decrease water mobility and in that way reduce cellulose water presenting capacity despite higher moisture content in partially amorphous cellulose compared to crystalline cellulose. The fact that higher amorphous content decreases cellulose water presenting capacity is a promising lead to improve stability of hydrolysis sensitive drugs in compositions with cellulose. This knowledge could be applicable to other pharmaceutical materials as the differences between crystalline and amorphous states of material are generally the same for different kind of materials. Mina Heidarian Höckerfelt, Department of Pharmacy, Box 580, Uppsala University, SE-75123 Uppsala, Sweden. © Mina Heidarian Höckerfelt 2015 ISSN 1651-6192 ISBN 978-91-554-9325-7 urn:nbn:se:uu:diva-261785 (http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-261785) To my beloved mothers dear memory

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Excipients in Moisture Sorption and Physical Stability of Solid Pharmaceutical Formulations

Airaksinen, S.T.T., 2005. Role of excipients in moisture sorption and physical stability of solid pharmaceutical formulations. Dissertationes bioscientiarum molecularium Universitatis Helsingiensis in Viikki, 20/2005, pp. 57, ISBN 952-10-2733-9 (print) ISBN 952-10-2734-7 (pdf) ISSN 1795-7079 The interaction of moisture with pharmaceutical solids is crucial to an understanding of water-based pro...

متن کامل

Determination of Cluster Hydrodynamics in Bubbling Fluidized Beds by the EMMS Approach

The local solid flow structure of gas-solid bubbling fluidized bed was investigated to identify and characterize the particle clusters. Extensive mathematical calculations were carried out using the energy-minimization multi-scale (EMMS) approach for evaluating cluster properties including the velocity, the size and the void fraction of clusters in the dense phase of the bed. The results showed...

متن کامل

Solubility enhancement of glimperide: Development of solid dispersion by solvent melt method, characterization and dosage form development

The aim of the present work was to develop immediate release dosage form of the solid dispersion of glimperide (GLIM) for potential enhancement in the bioavailability. The solid dispersions of GLIM were prepared with PEG6000, PVP K30 and Poloxamer 188, in 1:1, 1:3 and 1:5 %w/w ratio by using solvent wetting and solvent melt method. The in vitro dissolution parameters (%DE10min, %DE30min, %DE60m...

متن کامل

HCl- Etched Steel Fiber for Determination of Phthalates in Water Samples by Solid-Phase Microextraction

In the present work, a stainless steel wire was etched by hydrochloric acid during a chemical etching process. The obtained black layer on the surface of the fiber was used as sorbent for extraction of trace amount of phthalates in the aqueous samples by solid phase microextraction. New fiber efficiency was investigated using a home-made solid-phase microextraction (SPME) device and gas chr...

متن کامل

Investigation of ion transport and water content properties in anion exchange membranes based on polysulfone for solid alkaline fuel cell application

In present research work, homogeneous anion exchange membranes based on polysulfone (QAPSFs) were prepared via chloromethylation, amination and alkalization. In amination step, trimethylamine and N,N,N',N'-tetramethyl-1,6-hexanediamine were used as amination and crosslinking agents, respectively. The chloromethylated polysulfone was characterized by 1HNMR spectroscopy and chloromethylation degr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014